Should I stay or should I go? Humans adapt to the volatility of visual motion properties, and know about it

Laurent Perrinet, Chloé Pasturel & Anna Montagnini

Colloque international de la Société des Neurosciences 2019, 23/5/2019

Acknowledgements:
  • Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
  • Jean-Bernard Damasse and Laurent Madelain - ANR REM
  • Frédéric Chavane - INT


This work was supported by the PACE-ITN Project.

Motivation: Should I stay or should I go? - Probability bias

Motivation: Should I stay or should I go? - Eye Movements

Montagnini A, Souto D, and Masson GS (2010) J Vis (VSS Abstracts) 10(7):554,
Montagnini A, Perrinet L, and Masson GS (2015) BICV book chapter

Motivation: Should I stay or should I go? - Eye Movements

Motivation: Should I stay or should I go? - Eye Movements

Motivation: Should I stay or should I go? - Switching model

Outline

  1. Motivation: Should I stay or should I go?
  2. Methods: Experimental protocol

  3. Results:The Bayesian Changepoint Detector
  4. Results: Matching Behavioral data
  5. Results: Analyzing inter-individual differences

Methods: Experimental protocol - Switching model

full code @ github.com/chloepasturel/AnticipatorySPEM

Methods: Experimental protocol - Rating scale

Methods: Experimental protocol - Rating scale

full code @ github.com/chloepasturel/AnticipatorySPEM

Methods: Experimental protocol - Fitting eye movements

full code @ github.com/invibe/ANEMO

Methods: Experimental protocol - Fitting eye movements

full code @ github.com/invibe/ANEMO

Methods: Experimental protocol - Eye Movements

full code @ github.com/chloepasturel/AnticipatorySPEM

Methods: Experimental protocol

full code @ github.com/chloepasturel/AnticipatorySPEM

Methods: Experimental protocol

full code @ github.com/chloepasturel/AnticipatorySPEM

Methods: Experimental protocol

full code @ github.com/chloepasturel/AnticipatorySPEM

Methods: Experimental protocol

full code @ github.com/chloepasturel/AnticipatorySPEM

Outline

  1. Motivation: Should I stay or should I go?
  2. Methods: Experimental protocol
  3. Results:The Bayesian Changepoint Detector

  4. Results: Matching Behavioral data
  5. Results: Analyzing inter-individual differences

Results:The Bayesian Changepoint Detector - Switching model

Bayesian Changepoint Detector

  1. Initialize
    • $P(r_0=0)=1$ and
    • $ν^{(0)}_1 = ν_{prior}$ and $χ^{(0)}_1 = χ_{prior}$
  2. cycle over data from $t=0$ until $t=T-1$:
    1. Observe New Datum $x_t$
    2. Evaluate Predictive Probability $π_{0:t} = P(x_t |ν^{(r)}_t,χ^{(r)}_t)$
    3. Calculate Growth Probabilities $P(r_t=r_{t-1}+1, x_{0:t}) = P(r_{t-1}, x_{0:t-1}) \cdot π^{(r)}_t \cdot (1−h)$
    4. Calculate Changepoint Probabilities $P(r_t=0, x_{0:t})= \sum_{r_{t-1}} P(r_{t-1}, x_{0:t-1}) \cdot π^{(r)}_t \cdot h$
    5. Calculate Evidence $P(x_{0:t}) = \sum_{r_{t-1}} P (r_t, x_{0:t})$
    6. Determine Run Length Distribution $P (r_t | x_{0:t}) = P (r_t, x_{0:t})/P (x_{0:t}) $
    7. Update Sufficient Statistics :
      • $ν^{(0)}_{t+1} = ν_{prior}$, $χ^{(0)}_{t+1} = χ_{prior}$
      • $ν^{(r+1)}_{t+1} = ν^{(r)}_{t} +1$, $χ^{(r+1)}_{t+1} = χ^{(r)}_{t} + u(x_t)$
    8. Perform Prediction $P (x_{t+1} | x_{0:t}) = \sum_{r_t} P (x_{t+1}|x_{0:t} , r_t) \cdot P (r_t|x_{0:t})$ for the next datum

Results:The Bayesian Changepoint Detector

full code @ github.com/laurentperrinet/bayesianchangepoint

Results:The Bayesian Changepoint Detector - Leaky vs BBCP

Results:The Bayesian Changepoint Detector - Leaky vs BBCP

Results:The Bayesian Changepoint Detector - Leaky vs BBCP

Outline

  1. Motivation: Should I stay or should I go?
  2. Methods: Experimental protocol
  3. Results:The Bayesian Changepoint Detector
  4. Results: Matching Behavioral data

  5. Results: Analyzing inter-individual differences

Results: Matching Behavioral data - Compiling results

Results: Matching Behavioral data - fit with BCP

Results: Matching Behavioral data - fit with BCP

Results: Matching Behavioral data

full code @ github.com/laurentperrinet/bayesianchangepoint

Results: Matching Behavioral data

full code @ github.com/laurentperrinet/bayesianchangepoint

Results: Matching Behavioral data

full code @ github.com/laurentperrinet/bayesianchangepoint

Results: Matching Behavioral data - Leaky integrator

Results: Matching Behavioral data - BBCP

Outline

  1. Motivation: Should I stay or should I go?
  2. Methods: Experimental protocol
  3. Results:The Bayesian Changepoint Detector
  4. Results: Matching Behavioral data
  5. Results: Analyzing inter-individual differences

Results: Analyzing inter-individual differences

Results: Analyzing inter-individual differences

Results: Analyzing inter-individual differences

Should I stay or should I go? Humans adapt to the volatility of visual motion properties, and know about it

Laurent Perrinet, Chloé Pasturel & Anna Montagnini

Colloque international de la Société des Neurosciences 2019, 23/5/2019

Acknowledgements:
  • Rick Adams and Karl Friston @ UCL - Wellcome Trust Centre for Neuroimaging
  • Jean-Bernard Damasse and Laurent Madelain - ANR REM
  • Frédéric Chavane - INT


This work was supported by the PACE-ITN Project.


https://laurentperrinet.github.io/talk/2019-05-23-neurofrance